Enhanced Multi-Relationships Integration Graph Convolutional Network for Inferring Substitutable and Complementary Items

نویسندگان

چکیده

Understanding the relationships between items can improve accuracy and interpretability of recommender systems. Among these relationships, substitute complement attract most attention in e-commerce platforms. The substitutable are interchangeable might be compared with each other before purchasing, while complementary used conjunction usually bought together query item. In this paper, we focus on two issues inferring items: 1) how to model their mutual influence performance downstream tasks, 2) further discriminate them by considering strength relationship for different item pairs. We propose a novel multi-task learning framework named Enhanced Multi-Relationships Integration Graph Convolutional Network (EMRIGCN). regard inference task as link prediction heterogeneous graph types edges nodes (items). To complement, EMRIGCN adopts two-level integration module, i.e., feature structure integration, based experts sharing mechanism during message passing. obtain pairs, build an auxiliary loss function increase or decrease distances embeddings weak strong relation latent space. Extensive experiments both public industrial datasets prove that significantly outperforms state-of-the-art solutions. also conducted A/B tests real world systems Meituan Maicai, online supermarket platform China, obtained 15.3% improvement VBR 15.34% RPM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

Tensor graph convolutional neural network

In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Designing and Learning Substitutable Plane Graph Grammars

Though graph grammars have been widely investigated for 40 years, few learning results exist for them. The main reasons come from complexity issues that are inherent when graphs, and a fortiori graph grammars, are considered. The picture is however different if one considers drawings of graphs, rather than the graphs themselves. For instance, it has recently been proved that the isomorphism and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i4.25532